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The creation of this 5th edition was guided by three overarch-
ing imperatives: wherever possible, to improve the pedagogy; to 
continue to modernize the treatment (e.g., with a bit more on pho-
tons, phasors, and Fourier); and to update the content to keep pace 
with technological advances (e.g., the book now discusses atomic 
interferometers, and metamaterials). Optics is a fast-evolving 
field and this edition strives to provide an up-to-date approach to 
the discipline, all the while focusing mainly on pedagogy.

To that end there are several goals: (1) to sustain an apprecia-
tion of the central role played by atomic scattering in almost every 
aspect of Optics; (2) to establish from the outset, the underlying 
quantum-mechanical nature of light (indeed, of all quantum par-
ticles), even as the book is grounded in traditional methodology. 
Thus the reader will find electron and neutron diffraction patterns 
pictured alongside the customary photon images; (3) to provide an 
early introduction to the powerful perspective of Fourier theory, 
which has come to be so prevalent in modern-day analysis. Ac-
cordingly, the concepts of spatial frequency and spatial period are 
introduced and graphically illustrated as early as Chapter 2, right 
along with temporal frequency and period.

At the request of student users, I have dispersed throughout 
the text over one-hundred completely worked-out EXAMPLES 
that make use of the principles explored in each Section.  More 
than two hundred problems, sans solutions, have been added to 
the ends of the chapters to increase the available selection of 
fresh homework questions. A complete teacher’s solutions 
manual is available upon request. Inasmuch as “a picture is 
worth a thousand words,” many new diagrams and photographs 
further enhance the text. The book’s pedagogical strength lies 
in its emphasis on actually explaining what is being discussed. 
This edition furthers that approach. 

Having taught Optics every year since the 4th edition was 
published, I became aware of places in the book where things 
could be further clarified for the benefit of today’s students.  
Accordingly, this revision addresses dozens of little sticking 
points, and fills in lots of missing steps in derivations. Every piece 
of art has been scrutinized for accuracy, and altered where appro-
priate to improve readability and pedagogical effectiveness. 

Substantial additions of new materials can be found: in Chap-
ter 2 (Wave Motion), namely, a subsection on Twisted Light; in 
Chapter 3 (Electromagnetic Theory, Photons, and Light), an 
elementary treatment of divergence and curl, additional discus-
sion of photons, as well as subsections on Squeezed Light, and 
Negative Refraction; in Chapter 4 (The Propagation of Light), a 
short commentary on optical density, a piece on EM boundary 

conditions, more on evanescent waves, subsections on Refraction  
of Light From a Point Source, Negative Refraction, Huygens’s 
Ray Construction, and The Goos-Hänchen Shift; in Chapter 5 
(Geometrical Optics), lots of new art illustrating the behavior of 
lenses and mirrors, along with additional remarks on fiberoptics, 
as well as subsections on Virtual Objects, Focal-Plane Ray Trac-
ing, and Holey/Microstructured Fibers; in Chapter 6 (More on 
Geometrical Optics), there is a fresh look at simple ray tracing 
through a thick lens; in Chapter 7 (The Superposition of Waves), 
one can find a new subsection on Negative Phase Velocity, a 
much extended treatment of Fourier analysis with lots of dia-
grams showing—without calculus—how the process actually 
works, and a discussion of the optical frequency comb (which 
was recognized by a 2005 Nobel Prize); in Chapter 8 (Polariza-
tion), a powerful technique is developed using phasors to analyze 
polarized light; there is also a new discussion of the transmittance 
of polarizers, and a subsection on Wavefronts and Rays in Uni-
axial Crystals; Chapter 9 (Interference), begins with a brief  
conceptual discussion of diffraction and coherence as it relates to 
Young’s Experiment. There are several new subsections, among 
which are Near Field/Far Field, Electric Field Amplitude via 
Phasors, Manifestations of Diffraction, Particle Interference,  
Establishing The Wave Theory of Light, and Measuring Coher-
ence Length. Chapter 10 (Diffraction), contains a new subsec-
tion called Phasors and the Electric-Field Amplitude. Dozens of 
newly created diagrams and photographs extensively illustrate a 
variety of diffraction phenomena. Chapter 11 (Fourier Optics), 
now has a subsection, Two-Dimensional Images, which contains 
a remarkable series of illustrations depicting how spatial frequency 
components combine to create images. Chapter 12 (Basics of 
Coherence Theory), contains several new introductory subsec-
tions among which are Fringes and Coherence, and Diffraction 
and the Vanishing Fringes. There are also a number of additional 
highly supportive illustrations.  Chapter 13 (Modern Optics: Lasers 
and Other Topics), contains an enriched and updated treatment of 
lasers accompanied by tables and illustrations as well as several 
new subsections, including Optoelectronic Image Reconstruction.

This 5th edition offers a substantial amount of new material 
that will be of special interest to teachers of Optics. For example:  
in addition to plane, spherical, and cylindrical waves, we can 
now generate helical waves for which the surface of constant 
phase spirals as it advances through space (Section 2.11, p. 39). 

Beyond the mathematics, students often have trouble under-
standing what the operations of divergence and curl correspond 
to physically. Accordingly, the present revision contains a sec-
tion exploring what those operators actually do, in fairly simple 
terms (Section 3.1.5, p. 51). 
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4  Preface

probability-amplitude approach to quantum mechanics. In any 
event, it provides students with a complementary means of  
apprehending diffraction that is essentially free of calculus. 

The reader interested in Fourier optics can now find a wonder-
ful series of illustrations showing how sinusoidal spatial frequency 
contributions can come together to generate a recognizable two-
dimensional image; in this case of a young Einstein (p. 555). This 
extraordinary sequence of figures should be discussed, even in an 
introductory class where the material in Chapter 11 might other-
wise be beyond the level of the course—it’s fundamental to mod-
ern image theory, and conceptually beautiful.

To make the advanced treatment of coherence in Chapter 12 
more accessible to a wider readership, this edition now contains 
an essentially non-mathematical introduction (p. 590); it sets 
the stage for the traditional presentation.

Finally, the material on lasers, though only introductory, has 
been extended (p. 619) and brought more into line with the con-
temporary state of affairs.

Over the years since the 4th edition dozens of colleagues 
around the world have provided comments, advice, sugges-
tions, articles, and photographs for this new edition; I sincerely 
thank them all. I am especially grateful to Professor Chris Mack 
of the University of Texas at Austin, and Dr. Andreas Karpf of 
Adelphi University. I’m also indebted to my many students 
who have blind tested all the new expositive material, worked 
the new problems (often on exams), and helped take some of 
the new photos. Regarding the latter I particularly thank Tanya 
Spellman, George Harrison, and Irina Ostrozhnyuk for the 
hours spent, cameras in hand.

I am most appreciative of the support provided by the team  
at Addison Wesley, especially by Program Manager Katie 
Conley who has ably and thoughtfully guided the creation of this 
5th edition from start to finish. The manuscript was scrupulously 
and gracefully copy edited by Joanne Boehme who did a remark-
able job. Hundreds of complex diagrams were artfully drawn by 
Jim Atherton of Atherton Customs; his work is extraordinary and 
speaks for itself. This edition of Optics was developed under the 
ever-present guidance of John Orr of Orr Book Services. His 
abiding commitment to producing an accurate, beautiful book 
deserves special praise. In an era when traditional publishing is 
undergoing radical change, he uncompromisingly maintained the 
very highest standards, for which I am most grateful. It was truly 
a pleasure and a privilege working with such a consummate  
professional.

Lastly I thank my dear friend, proofreader extraordinaire, 
my wife, Carolyn Eisen Hecht who patiently coped with the 
travails of one more edition of one more book. Her good hu-
mor, forbearance, emotional generosity, and wise counsel were  
essential.

Anyone wishing to offer comments or suggestions concern-
ing this edition, or to provide contributions to a future edition, 
can reach me at Adelphi University, Physics Department,  
Garden City, NY, 11530 or better yet, at genehecht@aol.com.

The phenomenon of negative refraction is an active area of 
contemporary research and a brief introduction to the basic 
physics involved can now be found in Chapter 4 (p. 114). 

Huygens devised a method for constructing refracted rays 
(p. 116), which is lovely in and of itself, but it also allows for a 
convenient way to appreciate refraction in anisotropic crystals 
(p. 358).

When studying the interaction of electromagnetic waves 
with material media (e.g., in the derivation of the Fresnel Equa-
tions), one utilizes the boundary conditions. Since some student 
readers may have little familiarity with E&M, the 5th edition 
contains a brief discussion of the physical origins of those  
conditions (Section 4.6.1, p. 122).

The book now contains a brief discussion of the Goos-Hänchen 
shift which occurs in total internal reflection, It’s a piece of inter-
esting physics that is often overlooked in introductory treatments 
(Section 4.7.1, p. 137).

Focal-plane ray tracing is a straightforward way to track rays 
through complicated lens systems. This simple yet powerful 
technique, which is new to this edition, works nicely in the class-
room and is well worth a few minutes of lecture time (p. 177).

Several fresh diagrams now make clear the nature of virtual 
images and, more subtly, virtual objects arising via lens systems 
(p. 176–177).

The widespread use of fiberoptics has necessitated an up-to-
date exposition of certain aspects of the subject (p. 208–212). 
Among the new material the reader can now find a discussion 
of microstructured fibers and, more generally, photonic crys-
tals, both entailing significant physics (p. 212–214).

In addition to the usual somewhat formulaic, and alas, “dry” 
mathematical treatment of Fourier series, the book now con-
tains a fascinating graphical analysis that conceptually shows 
what those several integrals are actually doing. This is great 
stuff for undergraduates (Section 7.3.1, p. 309–313).

Phasors are utilized extensively to help students visualize 
the addition of harmonic waves. The technique is very useful in 
treating the orthogonal field components that constitute the 
various polarization states (p. 344). Moreover, the method 
 provides a nice graphical means to analyze the behavior of 
wave plates (p. 371).

Young’s Experiment and double-beam interference in gen-
eral, are central to both classical and quantum Optics. Yet the 
usual introduction to this material is far too simplistic in that it 
overlooks the limitations imposed by the phenomena of diffrac-
tion and coherence. The analysis now briefly explores those 
concerns early on (Section 9.1.1, p. 402).

The traditional discussion of interference is extended using 
phasors to graphically represent electric-field amplitudes, giv-
ing students an alternative way to visualize what’s happening 
(Section 9.3.1, p. 409).

Diffraction can also be conveniently appreciated via electric-
field phasors (p. 470–471). That methodology leads naturally to 
the classical vibration curve, which brings to mind Feynman’s 
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pointed out that a glass globe filled with water could be used 
for magnifying purposes. And it is certainly possible that some 
Roman artisans may have used magnifying glasses to facilitate 
very fine detailed work.

After the fall of the Western Roman Empire (475 c.e.), which 
roughly marks the start of the Dark Ages, little or no scientific 
progress was made in Europe for a great while. The dominance 
of the Greco-Roman-Christian culture in the lands embracing the 
Mediterranean soon gave way by conquest to the rule of Allah. 
The center of scholarship shifted to the Arab world. 

Refraction was studied by Abu Sa`d al-`Ala’ Ibn Sahl (940–
1000 c.e.), who worked at the Abbasid court in Baghdad, where 
he wrote On the Burning Instruments in 984. His accurate dia-
grammatical illustration of refraction, the first ever, appears in 
that book. Ibn Sahl described both parabolic and ellipsoidal burn-
ing mirrors and analyzed the hyperbolic plano-convex lens, as 
well as the hyperbolic biconvex lens. The scholar Abu Ali al-
Hasan ibn al-Haytham (965–1039), known in the Western world 
as Alhazen, was a prolific writer on a variety of topics, including 
14 books on Optics alone. He elaborated on the Law of Reflec-
tion, putting the angles of incidence and reflection in the same 
plane normal to the interface (p. 107); he studied spherical and 
parabolic mirrors and gave a detailed description of the human 
eye (p. 215). Anticipating Fermat, Alhazen suggested that light 
travels the fastest path through a medium.

By the latter part of the thirteenth century, Europe was only 
beginning to rouse from its intellectual stupor. Alhazen’s work 
was translated into Latin, and it had a great effect on the writings 
of Robert Grosseteste (1175–1253), Bishop of Lincoln, and on the 
Polish mathematician Vitello (or Witelo), both of whom were in-
fluential in rekindling the study of Optics. Their works were 
known to the Franciscan Roger Bacon (1215–1294), who is con-
sidered by many to be the first scientist in the modern sense. He 
seems to have initiated the idea of using lenses for correcting  
vision and even hinted at the possibility of combining lenses to 
form a telescope. Bacon also had some understanding of the way 
in which rays traverse a lens. After his death, Optics again lan-
guished. Even so, by the mid-1300s, European paintings were de-
picting monks wearing eyeglasses. And alchemists had come up 
with a liquid amalgam of tin and mercury that was rubbed onto the 
back of glass plates to make mirrors. Leonardo da Vinci (1452–
1519) described the camera obscura (p. 228), later popularized by 

1.1 Prolegomenon

In chapters to come we will evolve a formal treatment of much 
of the science of Optics, with particular emphasis on aspects of 
contemporary interest. The subject embraces a vast body of 
knowledge accumulated over roughly three thousand years of the 
human scene. Before embarking on a study of the modern view 
of things optical, let’s briefly trace the road that led us there, if 
for no other reason than to put it all in perspective.

1.2 In the Beginning

The origins of optical technology date back to remote antiqui-
ty. Exodus 38:8 (ca. 1200 b.c.e.) recounts how Bezaleel, while 
preparing the ark and tabernacle, recast “the looking-glasses of 
the women” into a brass laver (a ceremonial basin). Early mir-
rors were made of polished copper, bronze, and later on of 
speculum, a copper alloy rich in tin. Specimens have survived 
from ancient Egypt—a mirror in perfect condition was un-
earthed along with some tools from the workers’ quarters near 
the pyramid of Sesostris II (ca. 1900 b.c.e.) in the Nile valley. 
The Greek philosophers Pythagoras, Democritus, Empedocles, 
Plato, Aristotle, and others developed several theories of the 
nature of light. The rectilinear propagation of light (p. 99) was 
known, as was the Law of Reflection (p. 105) enunciated by 
Euclid (300 b.c.e.) in his book Catoptrics. Hero of Alexandria 
attempted to explain both these phenomena by asserting that 
light traverses the shortest allowed path between two points. 
The burning glass (a positive lens used to start fires) was  
alluded to by Aristophanes in his comic play The Clouds  
(424 b.c.e.). The apparent bending of objects partly immersed 
in water (p. 113) is mentioned in Plato’s Republic. Refraction 
was studied by Cleomedes (50 c.e.) and later by Claudius Ptol-
emy (130 c.e.) of Alexandria, who tabulated fairly precise 
measurements of the angles of incidence and refraction for 
several media (p. 108). It is clear from the accounts of the his-
torian Pliny (23–79 c.e.) that the Romans also possessed burn-
ing glasses. Several glass and crystal spheres have been found 
among Roman ruins, and a planar convex lens was recovered in 
Pompeii. The Roman philosopher Seneca (3 b.c.e.–65 c.e.) 
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10 Chapter 1 A Brief History

the work of Giovanni Battista Della Porta (1535–1615), who dis-
cussed multiple mirrors and combinations of positive and negative 
lenses in his Magia naturalis (1589).

This, for the most part, modest array of events constitutes 
what might be called the first period of Optics. It was undoubt-
edly a beginning—but on the whole a humble one. The whirl-
wind of accomplishment and excitement was to come later, in 
the seventeenth century.

1.3 From the Seventeenth Century

It is not clear who actually invented the refracting telescope, 
but records in the archives at The Hague show that on October 
2, 1608, Hans Lippershey (1587–1619), a Dutch spectacle 
maker, applied for a patent on the device. Galileo Galilei 
(1564–1642), in Padua, heard about the invention and within 
several months had built his own instrument (p. 235), grinding 
the lenses by hand. The compound microscope was invented 
at just about the same time, possibly by the Dutchman Zacha-
rias Janssen (1588–1632). The microscope’s concave eye-
piece was replaced with a convex lens by Francisco Fontana 
(1580–1656) of Naples, and a similar change in the telescope 
was introduced by Johannes Kepler (1571–1630). In 1611, 
Kepler published his Dioptrice. He had discovered total inter-
nal reflection (p. 133) and arrived at the small angle approxi-
mation to the Law of Refraction, in which case the incident 
and transmission angles are proportional. He evolved a treat-
ment of first-order Optics for thin-lens systems and in his 
book describes the detailed operation of both the Keplerian 
(positive eyepiece) and Galilean (negative eyepiece) tele-
scopes. Willebrord Snel (1591–1626), whose name is usually  
inexplicably spelled Snell, professor at Leyden, empirically 
discovered the long-hidden Law of Refraction (p. 108) in 
1621—this was one of the great moments in Optics. By learn-
ing precisely how rays of light are redirected on traversing a 
boundary between two media, Snell in one swoop swung open 
the door to modern applied Optics. René Descartes (1596–1650) 
was the first to publish the now familiar formulation of the 
Law of Refraction in terms of sines. Descartes deduced the 

Giovanni Battista Della Porta (1535–1615). (US National Library of Medicine)

A very early picture of an outdoor European 
village scene. The man on the left is selling 
eyeglasses. (INTERFOTO/Alamy)
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 1.3 From the Seventeenth Century 11

René Descartes by Frans Hals (1596–1650). (Georgios Kollidas/Shutterstock)

law using a model in which light was viewed as a pressure 
transmitted by an elastic medium; as he put it in his La Diop-
trique (1637)

recall the nature that I have attributed to light, when I said that it 
is nothing other than a certain motion or an action conceived in a 
very subtle matter, which fills the pores of all other bodies. . . .

The universe was a plenum. Pierre de Fermat (1601–1665), tak-
ing exception to Descartes’s assumptions, rederived the Law  
of Reflection (p. 117) from his own Principle of Least Time 
(1657).

The phenomenon of diffraction, that is, the deviation from 
rectilinear propagation that occurs when light advances beyond 
an obstruction (p. 457), was first noted by Professor Francesco 
Maria Grimaldi (1618–1663) at the Jesuit College in Bologna. 
He had observed bands of light within the shadow of a rod  
illuminated by a small source. Robert Hooke (1635–1703),  
curator of experiments for the Royal Society, London, later 

also observed diffraction effects. He was the first to study the 
colored interference patterns (p. 416) generated by thin films 
(Micrographia, 1665). He proposed the idea that light was a 
rapid vibratory motion of the medium propagating at a very 
great speed. Moreover, “every pulse or vibration of the lumi-
nous body will generate a sphere”—this was the beginning of 
the wave theory. Within a year of Galileo’s death, Isaac New-
ton (1642–1727) was born. The thrust of Newton’s scientific 
effort was to build on direct observation and avoid speculative 
hypotheses. Thus he remained ambivalent for a long while 
about the actual nature of light. Was it corpuscular—a stream 
of particles, as some maintained? Or was light a wave in an 
all-pervading medium, the aether? At the age of 23, he began 
his now famous experiments on dispersion.

I procured me a triangular glass prism to try therewith the cele-
brated phenomena of colours.

Newton concluded that white light was composed of a mix-
ture of a whole range of independent colors (p. 201). He main-
tained that the corpuscles of light associated with the various 
colors excited the aether into characteristic vibrations. Even 
though his work simultaneously embraced both the wave and 
emission (corpuscular) theories, he did become more commit-
ted to the latter as he grew older. His main reason for rejecting 
the wave theory as it stood then was the daunting problem of 
explaining rectilinear propagation in terms of waves that spread 
out in all directions.

After some all-too-limited experiments, Newton gave up try-
ing to remove chromatic aberration from refracting telescope 
lenses. Erroneously concluding that it could not be done, he 
turned to the design of reflectors. Sir Isaac’s first reflecting 
telescope, completed in 1668, was only 6 inches long and 1 inch 
in diameter, but it magnified some 30 times.

At about the same time that Newton was emphasizing the 
emission theory in England, Christiaan Huygens (1629–1695), 

Johannes Kepler (1571–1630). (Nickolae/Fotolia)

Sir Isaac Newton (1642–1727). (Georgios Kollidas/Fotolia)
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on the continent, was greatly extending the wave theory. Unlike 
Descartes, Hooke, and Newton, Huygens correctly concluded 
that light effectively slowed down on entering more dense me-
dia. He was able to derive the Laws of Reflection and Refrac-
tion and even explained the double refraction of calcite (p. 352), 
using his wave theory. And it was while working with calcite 
that he discovered the phenomenon of polarization (p. 338).

As there are two different refractions, I conceived also that there 
are two different emanations of the waves of light. . . .

Thus light was either a stream of particles or a rapid undula-
tion of aethereal matter. In any case, it was generally agreed 
that its speed was exceedingly large. Indeed, many believed 
that light propagated instantaneously, a notion that went back 
at least as far as Aristotle. The fact that it was finite was deter-
mined by the Dane Ole Christensen Römer (1644–1710). Jupi-
ter’s nearest moon, Io, has an orbit about that planet that is 
nearly in the plane of Jupiter’s own orbit around the Sun. 
Römer made a careful study of the eclipses of Io as it moved 
through the shadow behind Jupiter. In 1676 he predicted that 
on November 9 Io would emerge from the dark some 10 min-
utes later than would have been expected on the basis of its 
yearly averaged motion. Precisely on schedule, Io performed 
as predicted, a phenomenon Römer correctly ex plained as aris-
ing from the finite speed of light. He was able to determine that 
light took about 22 minutes to traverse the diameter of the Earth’s 
orbit around the Sun—a distance of about 186 million miles. 
Huygens and Newton, among others, were quite convinced of 
the validity of Römer’s work. Independently estimating the 
Earth’s orbital diameter, they assigned values to c equivalent to 
2.3 * 108 m>s and 2.4 * 108 m>s, respectively.*

The great weight of Newton’s opinion hung like a shroud 
over the wave theory during the eighteenth century, all but sti-
fling its advocates. Despite this, the prominent mathematician 
Leonhard Euler (1707–1783) was a devotee of the wave theory, 
even if an unheeded one. Euler proposed that the undesirable 
color effects seen in a lens were absent in the eye (which is an 
erroneous assumption) because the different media present ne-
gated dispersion. He suggested that achromatic lenses (p. 280) 
might be constructed in a similar way. Inspired by this work, 
Samuel Klingenstjerna (1698–1765), a professor at Uppsala, 
reperformed Newton’s experiments on achromatism and deter-
mined them to be in error. Klingenstjerna was in communica-
tion with a London optician, John Dollond (1706–1761), who 
was observing similar results. Dollond finally, in 1758, com-
bined two elements, one of crown and the other of flint glass, to 
form a single achromatic lens. Incidentally, Dollond’s invention 
was actually preceded by the unpublished work of the amateur 
scientist Chester Moor Hall (1703–1771) in Essex.

1.4 The Nineteenth Century

The wave theory of light was reborn at the hands of Dr. Thomas 
Young (1773–1829), one of the truly great minds of the century. 
In 1801, 1802, and 1803, he read papers before the Royal Society, 
extolling the wave theory and adding to it a new fundamental 
concept, the so-called Principle of Interference (p. 398):

When two undulations, from different origins, coincide either 
perfectly or very nearly in direction, their joint effect is a com-
bination of the motions belonging to each.

*A. Wróblewski, Am. J. Phys. 53, 620 (1985).

Christiaan Huygens (1629–1695). (Portrait of Christiaan Huygens (ca. 1680), Abraham 

Bloteling. Engraving. Rijksmuseum [Object number RP-P-1896-A-19320].)

Thomas Young (1773–1829). (Smithsonian Institution)
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He was able to explain the colored fringes of thin films and 
determined wavelengths of various colors using Newton’s 
data. Even though Young, time and again, maintained that his 
conceptions had their very origins in the research of Newton, 
he was severely attacked. In a series of articles, probably writ-
ten by Lord Brougham, in the Edinburgh Review, Young’s pa-
pers were said to be “destitute of every species of merit.”

Augustin Jean Fresnel (1788–1827), born in Broglie, Nor-
mandy, began his brilliant revival of the wave theory in France, 
unaware of the efforts of Young some 13 years earlier. Fresnel 
synthesized the concepts of Huygens’s wave description and 
the interference principle. The mode of propagation of a pri-
mary wave was viewed as a succession of spherical secondary 
wavelets, which overlapped and interfered to re-form the ad-
vancing primary wave as it would appear an instant later. In 
Fresnel’s words:

The vibrations of a luminous wave in any one of its points may 
be considered as the sum of the elementary movements con-
veyed to it at the same moment, from the separate action of all 
the portions of the unobstructed wave considered in any one of 
its anterior positions.

These waves were presumed to be longitudinal, in analogy with 
sound waves in air. Fresnel was able to calculate the diffraction 
patterns arising from various obstacles and apertures and satis-
factorily accounted for rectilinear propagation in homogeneous 
isotropic media, thus dispelling Newton’s main objection to the 
undulatory theory. When finally apprised of Young’s priority to 
the interference principle, a somewhat disappointed Fresnel 
nonetheless wrote to Young, telling him that he was consoled by 
finding himself in such good company—the two great men be-
came allies.

Huygens was aware of the phenomenon of polarization aris-
ing in calcite crystals, as was Newton. Indeed, the latter in his 
Opticks stated,

Every Ray of Light has therefore two opposite Sides. . . .

It was not until 1808 that Étienne Louis Malus (1775–1812) 
discovered that this two-sidedness of light also arose upon 
reflection (p. 363); the phenomenon was not inherent to crys-
talline media. Fresnel and Dominique François Arago (1786–
1853) then conducted a series of experiments to determine 
the effect of polarization on interference, but the results were 
utterly inexplicable within the framework of their longitudi-
nal wave picture. This was a dark hour indeed. For several 
years Young, Arago, and Fresnel wrestled with the problem 
until finally Young suggested that the aethereal vibration 
might be transverse, as is a wave on a string. The two-sidedness 
of light was then simply a manifestation of the two orthogo-
nal vibrations of the aether, transverse to the ray direc tion. 
Fresnel went on to evolve a mechanistic description of aether 
oscillations, which led to his now famous formulas for the 
amplitudes of reflected and transmitted light (p. 123). By 
1825 the emission (or corpuscular) theory had only a few te-
nacious advocates.

The first terrestrial determination of the speed of light was per-
formed by Armand Hippolyte Louis Fizeau (1819–1896) in 1849. 
His apparatus, consisting of a rotating toothed wheel and a distant 
mirror (8633 m), was set up in the suburbs of Paris from Suresnes 
to Montmartre. A pulse of light leaving an opening in the wheel 
struck the mirror and returned. By adjusting the known rotational 
speed of the wheel, the returning pulse could be made either to 
pass through an opening and be seen or to be obstructed by a 
tooth. Fizeau arrived at a value of the speed of light equal to 
315 300 km>s. His colleague Jean Bernard Léon Foucault (1819–
1868) was also involved in research on the speed of light. In 1834 
Charles Wheatstone (1802–1875) had designed a rotating-mirror 
arrangement in order to measure the duration of an electric spark. 
Using this scheme, Arago had proposed to measure the speed of 
light in dense media but was never able to carry out the experi-
ment. Foucault took up the work, which was later to provide mate-
rial for his doctoral thesis. On May 6, 1850, he reported to the 
Academy of Sciences that the speed of light in water was less than 
that in air. This result was in direct conflict with Newton’s formu-
lation of the emission theory and a hard blow to its few remaining 
devotees.

While all of this was happening in Optics, quite indepen-
dently, the study of electricity and magnetism was also 
bearing fruit. In 1845 the master experimentalist Michael 
Faraday (1791–1867) established an interrelationship be-
tween electromagnetism and light when he found that the 
polarization direction of a beam could be altered by a strong 
magnetic field applied to the medium. James Clerk Maxwell 
(1831–1879) brilliantly summarized and extended all the 
empirical knowledge on the subject in a single set of math-
ematical equations. Beginning with this remarkably succinct 

Augustin Jean Fresnel (1788–1827). (US National Library of Medicine)
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14 Chapter 1 A Brief History

and beautifully symmetrical synthesis, he was able to show, 
purely theoretically, that the electromagnetic field could 
propagate as a transverse wave in the luminiferous aether  
(p. 54).

Solving for the speed of the wave, Maxwell arrived at an ex-
pression in terms of electric and magnetic properties of the me-
dium (c = 1>1P0m0). Upon substituting known empirically 
determined values for these quantities, he obtained a numerical 
result equal to the measured speed of light! The conclusion was 
inescapable—light was “an electromagnetic disturbance in the 
form of waves” propagated through the aether. Maxwell died at 
the age of 48, eight years too soon to see the experimental con-
firmation of his insights and far too soon for physics. Heinrich 
Rudolf Hertz (1857–1894) verified the existence of long electro-
magnetic waves by generating and detecting them in an exten-
sive series of experiments published in 1888.

The acceptance of the wave theory of light seemed to  
necessitate an equal acceptance of the existence of an all-
pervading substratum, the luminiferous aether. If there were 
waves, it seemed obvious that there must be a supporting me-
dium. Quite naturally, a great deal of scientific effort went 
into determining the physical nature of the aether, yet it 
would have to possess some rather strange properties. It had 
to be so tenuous as to allow an apparently unimpeded motion 
of celestial bodies. At the same time, it could support the ex-
ceedingly high-frequency (∼1015 Hz) oscillations of light 
traveling at 186 000 miles per second. That implied remark-
ably strong restoring forces within the aethereal substance. 
The speed at which a wave advances through a medium is 
dependent on the characteristics of the disturbed substratum 
and not on any motion of the source. This is in contrast to the 
behavior of a stream of particles whose speed with respect to 
the source is the essential parameter.

Certain aspects of the nature of aether intrude when study-
ing the optics of moving objects, and it was this area of  

research, evolving quietly on its own, that ultimately led to the 
next great turning point. In 1725 James Bradley (1693–1762), 
then Savilian Professor of Astronomy at Oxford, attempted to 
measure the distance to a star by observing its orientation at 
two different times of the year. The position of the Earth 
changed as it orbited around the Sun and thereby provided a 
large baseline for triangulation on the star. To his surprise, 
Bradley found that the “fixed” stars displayed an apparent sys-
tematic movement related to the direction of motion of the 
Earth in orbit and not dependent, as had been anticipated, on 
the Earth’s position in space. This so-called stellar aberration 
is analogous to the well-known falling-raindrop situation. A 
raindrop, although traveling vertically with respect to an ob-
server at rest on the Earth, will appear to change its incident 
angle when the observer is in motion. Thus a corpuscular 

James Clerk Maxwell (1831–1879). (E.H.)

Table of Opticks from Volume 2 of the Cyclopedia: or, An Universal Dictionary 
of Arts and Sciences, edited by Ephraim Chambers, published in London by 
James and John Knapton in 1728. (University of Wisconsin Digital Collections)
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model of light could explain stellar aberration rather handily. 
Alternatively, the wave theory also offers a satisfactory expla-
nation provided that the aether remains totally undisturbed as 
the Earth plows through it.

In response to speculation as to whether the Earth’s motion 
through the aether might result in an observable difference be-
tween light from terrestrial and extraterrestrial sources, Arago 
set out to examine the problem experimentally. He found that 
there were no such observable differences. Light behaved just 
as if the Earth were at rest with respect to the aether. To ex-
plain these results, Fresnel suggested in effect that light was 
partially dragged along as it traversed a transparent medium in 
motion. Experiments by Fizeau, in which light beams passed 
down moving columns of water, and by Sir George Biddell 
Airy (1801–1892), who used a water-filled telescope in 1871 
to examine stellar aberration, both seemed to confirm Fres-
nel’s drag hypothesis. Assuming an aether at absolute rest, 
Hendrik Antoon Lorentz (1853–1928) derived a theory that 
encompassed Fresnel’s ideas.

In 1879 in a letter to D. P. Todd of the U.S. Nautical Almanac 
Office, Maxwell suggested a scheme for measuring the speed 
at which the solar system moved with respect to the lumi-
niferous aether. The American physicist Albert Abraham 
Michelson (1852–1931), then a naval instructor, took up the 
idea. Michelson, at the tender age of 26, had already estab-
lished a favorable reputation by performing an extremely pre-
cise determination of the speed of light. A few years later, he 
began an experiment to measure the effect of the Earth’s mo-
tion through the aether. Since the speed of light in aether is 
constant and the Earth, in turn, presumably moves in relation 
to the aether (orbital speed of 67 000 mi>h), the speed of light 
measured with respect to the Earth should be affected by the 
planet’s motion. In 1881 he published his findings. There was 
no detectable motion of the Earth with respect to the aether—
the aether was stationary. But the decisiveness of this surprising 
result was blunted somewhat when Lorentz pointed out an 
oversight in the calculation. Several years later Michelson, 
then professor of physics at Case School of Applied Science in 
Cleveland, Ohio, joined with Edward Williams Morley (1838–
1923), a well-known professor of chemistry at Western  
Reserve, to redo the experiment with considerably greater 
precision. Amazingly enough, their results, published in 
1887, once again were negative:

It appears from all that precedes reasonably certain that if there 
be any relative motion between the earth and the luminiferous 
aether, it must be small; quite small enough entirely to refute 
Fresnel’s explanation of aberration.

Thus, whereas an explanation of stellar aberration within the 
context of the wave theory required the existence of a relative 
motion between Earth and aether, the Michelson–Morley Ex-
periment refuted that possibility. Moreover, the findings of 
Fizeau and Airy necessitated the inclusion of a partial drag of 
light due to motion of the medium.

1.5 Twentieth-Century Optics

Jules Henri Poincaré (1854–1912) was perhaps the first to grasp 
the significance of the experimental inability to observe any ef-
fects of motion relative to the aether. In 1899 he began to make 
his views known, and in 1900 he said:

Our aether, does it really exist? I do not believe that more pre-
cise observations could ever reveal anything more than relative 
displacements.

In 1905 Albert Einstein (1879–1955) introduced his Special 
Theory of Relativity, in which he too, quite independently, re-
jected the aether hypothesis.

The introduction of a “luminiferous aether” will prove to be su-
perfluous inasmuch as the view here to be developed will not 
require an “absolutely stationary space.”

He further postulated:

light is always propagated in empty space with a definite velocity 
c which is independent of the state of motion of the emitting body.

The experiments of Fizeau, Airy, and Michelson–Morley 
were then explained quite naturally within the framework of 
Einstein’s relativistic kinematics.* Deprived of the aether, 
physicists simply had to get used to the idea that electromag-
netic waves could propagate through free space—there was no 
alternative. Light was now envisaged as a self-sustaining wave 
with the conceptual emphasis passing from aether to field. The 
electromagnetic wave became an entity in itself.

On October 19, 1900, Max Karl Ernst Ludwig Planck (1858–
1947) read a paper before the German Physical Society in which 
he introduced the hesitant beginnings of what was to become yet 

Albert Einstein (1879–1955). (Orren Jack Turner/Library of Congress Prints and 

Photographs Division [LC-USZ62-60242])

*See, for example, Special Relativity by French, Chapter 5.
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another great revolution in scientific thought—Quantum  
Mechanics, a theory embracing submicroscopic phenomena  
(p. 61). In 1905, boldly building on these ideas, Einstein pro-
posed a new form of corpuscular theory in which he asserted that 
light consisted of globs or “particles” of energy. Each such quan-
tum of radiant energy or photon,† as it came to be called, had an 
energy proportional to its frequency n, that is, ℰ = hn, where h 
is known as Planck’s constant (Fig. 1.1). By the end of the 1920s, 
through the efforts of Bohr, Born, Heisenberg, Schrödinger,  
De Broglie, Pauli, Dirac, and others, Quantum Mechanics had 
become a well-verified theory. It gradually became evident that 
the concepts of particle and wave, which in the macroscopic 
world seem so obviously mutually exclusive, must be merged in 
the submicroscopic domain. The mental image of an atomic par-
ticle (e.g., electrons and neutrons) as a minute localized lump of 
matter would no longer suffice. Indeed, it was found that these 
“particles” could generate interference and diffraction patterns 
in precisely the same way as would light (p. 412). Thus photons, 
protons, electrons, neutrons, and so forth—the whole lot—have 
both particle and wave manifestations. Still, the matter was by 
no means settled. “Every physicist thinks that he knows what a 
photon is,” wrote Einstein. “I spent my life to find out what a 
photon is and I still don’t know it.”

Relativity liberated light from the aether and showed the kin-
ship between mass and energy (via ℰ0 = mc2). What seemed to 
be two almost antithetical quantities now became interchange-
able. Quantum Mechanics went on to establish that a particle‡ 

of momentum p had an associated wavelength l, such that 
p = h>l. The easy images of submicroscopic specks of matter 
became untenable, and the wave-particle dichotomy dissolved 
into a duality.

Quantum Mechanics also treats the manner in which light is 
absorbed and emitted by atoms (p. 74). Suppose we cause a gas 
to glow by heating it or passing an electrical discharge through 
it. The light emitted is characteristic of the very structure of the 
atoms constituting the gas. Spectroscopy, which is the branch of 
Optics dealing with spectrum analysis (p. 83), developed from 
the research of Newton. William Hyde Wollaston (1766–1828) 
made the earliest observations of the dark lines in the solar spec-
trum (1802). Because of the slit-shaped aperture generally used 
in spectroscopes, the output consisted of narrow colored bands 
of light, the so-called spectral lines. Working independently,  
Joseph Fraunhofer (1787–1826) greatly extended the subject. 
After accidentally discovering the double line of sodium (p. 144), 
he went on to study sunlight and made the first wavelength de-
terminations using diffraction gratings (p. 496). Gustav Robert 
Kirchhoff (1824–1887) and Robert Wilhelm Bunsen (1811–1899), 
working together at Heidelberg, established that each kind of 
atom had its own signature in a characteristic array of spectral 
lines. And in 1913 Niels Henrik David Bohr (1885–1962) set 
forth a precursory quantum theory of the hydrogen atom, which 
was able to predict the wavelengths of its emission spectrum. 
The light emitted by an atom is now understood to arise from its 
outermost electrons (p. 74). The process is the domain of mod-
ern quantum theory, which describes the most minute details 
with incredible precision and beauty.

The flourishing of applied Optics in the second half of the 
twentieth century represents a renaissance in itself. In the 1950s 

Figure 1.1  A rather convincing illustration 
of the particle nature of light. This sequence 
of photos was made using a position-sensing 
photomultiplier tube illuminated by an  
(8.5 * 103 count-per-second) image of a  
bar chart. The exposure times were  
(a) 8 ms, (b) 125 ms, (c) 1 s, (d) 10 s, and 
(e) 100 s. Each dot can be interpreted as 
the arrival of a single photon. (ITT Electro-Optical 

Products Division)

(a) (c)

(e)

(b)

(d)

†The word photon was coined by G. N. Lewis, Nature, December 18, 1926.
‡Perhaps it might help if we just called them all wavicles.
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new devices. The technology needed to produce a practicable 
optical communications system developed rapidly. The sophis-
ticated use of crystals in devices such as second-harmonic gen-
erators (p. 668), electro-optic and acousto-optic modulators, 
and the like spurred a great deal of contemporary research in 
crystal optics. The wavefront reconstruction technique known 
as holography (p. 652), which produces magnificent three- 
dimensional images, was found to have numerous additional 
applications (nondestructive testing, data storage, etc.).

The military orientation of much of the developmental work 
in the 1960s continued into the 2000s with added vigor. Today 
that technological interest in Optics ranges across the spectrum 
from “smart bombs” and spy satellites to “death rays” and infra-
red gadgets that see in the dark. But economic considerations 
coupled with the need to improve the quality of life have brought 
products of the discipline into the consumer marketplace as 
never before. Lasers are in use everywhere: reading videodiscs 
in living rooms, cutting steel in factories, scanning labels in  
supermarkets, and performing surgery in hospitals. Millions of 
optical display systems on clocks and calculators and comput-
ers are blinking all around the world. The almost exclusive use, 
for the last one hundred years, of electrical signals to handle 
and transmit data is now rapidly giving way to more efficient 
optical techniques. A far-reaching revolution in the methods of 
processing and communicating information is quietly taking 
place, a revolution that will continue to change our lives in the 
years ahead.

Profound insights are slow in coming. What few we have took 
over three thousand years to glean, even though the pace is ever 
quickening. It is marvelous indeed to watch the answer subtly 
change while the question immutably remains—what is light?*

several workers began to inculcate Optics with the mathemati-
cal techniques and insights of communications theory. Just as 
the idea of momentum provides another dimension in which to 
visualize aspects of mechanics, the concept of spatial frequency 
offers a rich new way of appreciating a broad range of optical 
phenomena. Bound together by the mathematical formalism of 
Fourier analysis (p. 308), the outgrowths of this contemporary 
emphasis have been far-reaching. Of particular interest are the 
theory of image formation and evaluation (p. 552), the transfer 
functions (p. 578), and the idea of spatial filtering (p. 328).

The advent of the high-speed digital computer brought with 
it a vast improvement in the design of complex optical systems. 
Aspherical lens elements (p. 160) took on renewed practical 
significance, and the diffraction-limited system with an appre-
ciable field of view became a reality. The technique of ion bom-
bardment polishing, in which one atom at a time is chipped 
away, was introduced to meet the need for extreme precision in 
the preparation of optical elements. The use of single and mul-
tilayer thin-film coatings (reflecting, antireflecting, etc.) be-
came commonplace (p. 443). Fiberoptics evolved into a practi-
cal communications tool (p. 204), and thin-film light guides 
continued to be studied. A great deal of attention was paid to the 
infrared end of the spectrum (surveillance systems, missile 
guidance, etc.), and this in turn stimulated the development of 
infrared materials. Plastics began to be used extensively in  
Optics (lens elements, replica gratings, fibers, aspherics, etc.). 
A new class of partially vitrified glass ceramics with exceed-
ingly low thermal expansion was developed. A resurgence in 
the construction of astronomical observatories (both terrestrial 
and extraterrestrial) operating across the whole spectrum was 
well under way by the end of the 1960s and vigorously sus-
tained into the twenty-first century (p. 236).

The first laser was built in 1960, and within a decade laser-
beams spanned the range from infrared to ultraviolet. The 
availability of high-power coherent sources led to the discov-
ery of a number of new optical effects (harmonic generation, 
frequency mixing, etc.) and thence to a panorama of marvelous 

*For more reading on the history of Optics, see F. Cajori, A History of Physics,  
and V. Ronchi, The Nature of Light. Excerpts from a number of original papers  
can conveniently be found in W. F. Magie, A Source Book in Physics, and in  
M. H. Shamos, Great Experiments in Physics.
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The issue of the actual nature of light is central to a complete 
treatment of Optics, and we will struggle with it throughout this 
work. The straightforward question “Is light a wave phenome-
non or a particle phenomenon?” is far more complicated than it 
might at first seem. For example, the essential feature of a par-
ticle is its localization; it exists in a well-defined, “small” region 
of space. Practically, we tend to take something familiar like a 
ball or a pebble and shrink it down in imagination until it be-
comes vanishingly small, and that’s a “particle,” or at least the 
basis for the concept of “particle.” But a ball interacts with its 
environment; it has a gravitational field that interacts with the 
Earth (and the Moon, and Sun, etc.). This field, which spreads 
out into space—whatever it is—cannot be separated from the 
ball; it is an inextricable part of the ball just as it is an inextri-
cable part of the definition of “particle.” Real particles interact 
via fields, and, in a sense, the field is the particle and the particle 
is the field. That little conundrum is the domain of Quantum 
Field Theory, a discipline we’ll talk more about later (p. 148). 
Suffice it to say now that if light is a stream of submicroscopic 
particles (photons), they are by no means “ordinary” miniball 
classical particles.

On the other hand, the essential feature of a wave is its non-
localization. A classical traveling wave is a self-sustaining dis-
turbance of a medium, which moves through space transporting 
energy and momentum. We tend to think of the ideal wave as a 
continuous entity that exists over an extended region. But when 
we look closely at real waves (such as waves on strings), we see 
composite phenomena comprising vast numbers of particles 
moving in concert. The media supporting these waves are atomic 
(i.e., particulate), and so the waves are not continuous entities in 
and of themselves. The only possible exception might be the 
electromagnetic wave. Conceptually, the classical electromag-
netic wave (p. 54) is supposed to be a continuous entity, and it 
serves as the model for the very notion of wave as distinct from 
particle. But in the past century we found that the energy of  
an electromagnetic wave is not distributed continuously. The 
classical formulation of the electromagnetic theory of light, 
however wonderful it is on a macroscopic level, is profoundly 
wanting on a microscopic level. Einstein was the first to suggest 
that the electromagnetic wave, which we perceive macroscopi-
cally, is the statistical manifestation of a fundamentally granular 
underlying microscopic phenomenon (p. 61). In the subatomic 

domain, the classical concept of a physical wave is an illusion. 
Still, in the large-scale regime in which we ordinarily work, 
electromagnetic waves seem real enough and classical theory 
applies superbly well.

Because both the classical and quantum-mechanical treat-
ments of light make use of the mathematical description of 
waves, this chapter lays out the basics of what both formal isms 
will need. The ideas we develop here will apply to all physical 
waves, from a surface tension ripple in a cup of tea to a pulse of 
light reaching us from some distant galaxy.

2.1 One-Dimensional Waves

An essential aspect of a traveling wave is that it is a self-
sustaining disturbance of the medium through which it propa-
gates. The most familiar waves, and the easiest to visualize 
(Fig. 2.1), are the mechanical waves, among which are waves 
on strings, surface waves on liquids, sound waves in the air, 
and compression waves in both solids and fluids. Sound waves 
are longitudinal—the medium is displaced in the direction of 
motion of the wave. Waves on a string (and electromagnetic 
waves) are transverse—the medium is displaced in a direction 
perpendicular to that of the motion of the wave. In all cases, 
although the energy-carrying disturbance advances through the 
medium, the individual participating atoms remain in the vi-
cinity of their equilibrium positions: the disturbance advances, 
not the material medium. That’s one of several crucial features 
of a wave that distinguishes it from a stream of particles. The 
wind blowing across a field sets up “waves of grain” that sweep 
by, even though each stalk only sways in place. Leonardo da 
Vinci seems to have been the first person to recognize that a 
wave does not transport the medium through which it travels, 
and it is precisely this property that allows waves to propagate 
at very great speeds.

What we want to do now is figure out the form the wave equa-
tion must have. To that end, envision some such disturbance c 
moving in the positive x-direction with a constant speed v. The 
specific nature of the disturbance is at the moment unimportant. 
It might be the vertical displacement of the string in Fig. 2.2 or 
the magnitude of an electric or magnetic field associated with an 

Wave Motion
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 2.1 One-Dimensional Waves 19

electromagnetic wave (or even the quantum-mechanical proba-
bility amplitude of a matter wave).

Since the disturbance is moving, it must be a function of 
both position and time;

 c(x, t) = ƒ(x, t) (2.1)

where ƒ(x, t) corresponds to some specific function or wave 
shape. This is represented in Fig. 2.3a, which shows a pulse 
traveling in the stationary coordinate system S at a speed v. The 
shape of the disturbance at any instant, say, t = 0, can be found 
by holding time constant at that value. In this case,

 c(x, t) 0 t = 0 = ƒ(x, 0) = ƒ(x) (2.2)

represents the profile of the wave at that time. For example, if 
ƒ(x) = e-ax2

, where a is a constant, the profile has the shape of 
a bell; that is, it is a Gaussian function. (Squaring the x makes 
it symmetrical around the x = 0 axis.) Setting t = 0 is analo-
gous to taking a “photograph” of the pulse as it travels by. 

(a)

(b)

Figure 2.1  (a) A longitudinal wave in a spring. (b) A transverse wave in a 
spring.

v

Figure 2.2  A wave on a string.

c = f (x–vt)

xx′0 0′

S S′

c = f (x′)

x′0′

S′

c = f (x,t)
v

x

S

vt

x

x′

0

(a)

(b)

(c)

Figure 2.3  Moving reference frame.

For the moment we limit ourselves to a wave that does not 
change its shape as it progresses through space. After a time t the 
pulse has moved along the x-axis a distance vt, but in all other 
respects it remains unaltered. We now introduce a coordinate sys-
tem S′, that travels along with the pulse (Fig. 2.3b) at the speed v.  
In this system c is no longer a function of time, and as we move 
along with S′, we see a stationary constant profile described by 
Eq. (2.2). Here, the coordinate is x′ rather than x, so that

 c = ƒ(x′) (2.3)
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20 Chapter 2 Wave Motion

The disturbance looks the same at any value of t in S′ as it did 
at t = 0 in S when S and S′ had a common origin (Fig. 2.3c). 

We now want to rewrite Eq. (2.3) in terms of x to get the 
wave as it would be described by someone at rest in S. It follows 
from Fig. 2.3c that

 x′ = x - vt (2.4)

and substituting into Eq. (2.3)

 c(x, t) = ƒ(x - vt) (2.5)

This then represents the most general form of the one-dimensional 
wavefunction. To be more specific, we have only to choose a 
shape, Eq. (2.2), and then substitute (x - vt) for x in ƒ(x). The 
resulting expression describes a wave having the desired pro-
file, moving in the positive x-direction with a speed v. Thus, 
c(x, t) = e-a(x - vt)2

 is a bell-shaped wave, a pulse.
To see how this all works in a bit more detail, let’s unfold  

the analysis for a specific pulse, for example, c(x) =   
3>[10x2 + 1] = ƒ(x). That profile is plotted in Fig. 2.4a, and if 
it was a wave on a rope, c would be the vertical displacement 
and we might even replace it by the symbol y. Whether c rep-
resents displacement or pressure or electric field, we now have 
the profile of the disturbance. To turn ƒ(x) into c(x, t), that is, 
to turn it into the description of a wave moving in the positive 
x-direction at a speed v, we replace x wherever it appears in 
ƒ(x) by (x - vt), thereby yielding c(x, t) = 3>[10(x - vt)2 + 1]. 
If v is arbitrarily set equal to, say, 1.0 m>s  and the function is 
plotted successively at t = 0, t = 1 s, t = 2 s, and t = 3 s, we get 
Fig. 2.4b, which shows the pulse sailing off to the right at 1.0 m>s, 
just the way it’s supposed to. Incidentally, had we substituted 
(x + vt) for x in the profile function, the resulting wave would 
move off to the left.

If we check the form of Eq. (2.5) by examining c after an 
increase in time of ∆t and a corresponding increase of v ∆t in x, 
we find

ƒ[(x + v ∆t) - v(t + ∆t)] = ƒ(x - vt)

and the profile is unaltered.
Similarly, if the wave was traveling in the negative x-direction, 

that is, to the left, Eq. (2.5) would become

 c = ƒ(x + vt), with v 7 0 (2.6)

We may conclude therefore that, regardless of the shape of the 
disturbance, the variables x and t must appear in the function as 
a unit, that is, as a single variable in the form (x ∓ vt).  
Equation (2.5) is often expressed equivalently as some function 
of (t - x>v), since

 ƒ(x - vt) = F (-  
x - vt

v ) = F(t - x>v) (2.7)

The pulse shown in Fig. 2.2 and the disturbance described 
by Eq. (2.5) are spoken of as one-dimensional because the 
waves sweep over points lying on a line—it takes only one 

space variable to specify them. Don’t be confused by the fact 
that in this particular case the rope happens to rise up into a 
second dimension. In contrast, a two-dimensional wave propa-
gates out across a surface, like the ripples on a pond, and can 
be described by two space variables.

2.1.1 The Differential Wave Equation

In 1747 Jean Le Rond d’Alembert introduced partial differen-
tial equations into the mathematical treatment of physics. That 
same year, he wrote an article on the motion of vibrating strings 
in which the so-called differential wave equation appears for 
the first time. This linear, homogeneous, second-order, partial 
differential equation is usually taken as the defining expression 
for physical waves in a lossless medium. There are lots of dif-
ferent kinds of waves, and each is described by its own wave-
function c(x). Some are written in terms of pressure, or dis-
placement, while others deal with electromagnetic fields, but 

1
2
3

4
57

8
9
10

11

6

–6

(a)

–4 –2 2 4 60

1.0

2.5

3.0

x

c(x, 0) = f (x)

t = 0

1.5

2.0

c(x, t)

–4 –2 2 4 6

v = 1.0 m�s

0

2.5

3.0

x

t = 0 t = 1 s t = 2 s t = 3 s

2.0

0.5

1
2
3

4
57

8
9
10

11

6

1
2
3

4
57

8
9
10

11

6

1
2
3

4
57

8
9
10

11

6

1
2
3

4
57

8
9
10

11

6

1.0

1.5

(b)

0.5

Figure 2.4  (a) The profile of a pulse given by the function ƒ(x) =  
3>(10x2 + 1). (b) The profile shown in (a) is now moving as a wave,  
c(x, t) = 3>[10(x - vt)2 + 1], to the right. We assign it a speed of  
1 m>s and it advances in the positive x-direction.
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remarkably all such wavefunctions are solutions of the same 
differential wave equation. The reason it’s a partial differen-
tial equation is that the wave must be a function of several in-
dependent variables, namely, those of space and time. A linear 
differential equation is essentially one consisting of two or 
more terms, each composed of a constant multiplying a func-
tion c(x) or its derivatives. The relevant point is that each such 
term must appear only to the first power; nor can there be any 
cross products of c with its derivatives, or of its derivatives. 
Recall that the order of a differential equation equals the order 
of the highest derivative in that equation. Furthermore, if a 
differential equation is of order N, the solution will contain N 
arbitrary constants. 

We now derive the one-dimensional form of the wave 
equation guided by the foreknowledge (p. 22) that the most 
basic of waves traveling at a fixed speed requires two con-
stants (amplitude and frequency or wavelength) to specify it, 
and this suggests second derivatives. Because there are two 
independent variables (here, x and t) we can take the deriva-
tive of c(x, t) with respect to either x or t. This is done by just 
differentiating with respect to one variable and treating the 
other as if it were constant. The usual rules for differentiation 
apply, but to make the distinction evident the partial derivative 
is written as 0>0x.

To relate the space and time dependencies of c(x, t), take the 
partial derivative of c(x, t) = ƒ(x′) with respect to x, holding t 
constant. Using x′ = x ∓ vt, and inasmuch as

0c
0x

=
0ƒ

0x

 
0c
0x

=
0ƒ

0x′
 
0x′
0x

=
0ƒ

0x′
 (2.8)

because 
0x′
0x

=
0(x ∓ vt)

0x
= 1 

Holding x constant, the partial derivative with respect to time is

 
0c
0t

=
0ƒ

0x′
 
0x′
0t

=
0ƒ

0x′
 (∓v) = ∓v 

0ƒ

0x′
 (2.9)

Combining Eqs. (2.8) and (2.9) yields

 
0c
0t

= ∓v 
0c
0x

 

This says that the rate of change of c with t and with x are 
equal, to within a multiplicative constant, as shown in Fig. 2.5. 
The second partial derivatives of Eqs. (2.8) and (2.9) are

 
02c

0x2 =
02ƒ

0x′2 (2.10)

and 
02c

0t2 =
0
0t

 a∓v 
0ƒ

0x′
b = ∓v 

0
0x′

 a0ƒ

0t
b 

x

t = t0 time held constant

c(x, t0)

c(x0, vt0)

vt

x = x0 position held constant

c(x0, t)

c(x0, vt0)

x0

vt0

Figure 2.5  Variation of c with x and t.

Since

0c
0t

=
0ƒ

0t

 
02c

0t2 = ∓v 
0

0x′
 a0c

0t
b

It follows, using Eq. (2.9), that

02c

0t2 = v2 
02ƒ

0x′2

Combining this with Eq. (2.10), we obtain

 
02c

0x2 =
1

v2 
02c

0t2  (2.11)

which is the desired one-dimensional differential wave equation.

EXAMPLE 2.1 

The wave shown in Fig. 2.4 is given by

c(x, t) =
3

[10(x - vt)2 + 1]

Show, using brute force, that this is a solution to the one- 
dimensional differential wave equation.

SOLUTION

02c

0x2 =
1

v2 
02c

0t2

Continued
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22 Chapter 2 Wave Motion

Differentiating with respect to x:

 
0c
0x

=
0
0x
c 3

10(x - vt)2 + 1
d

 
0c
0x

= (-1) 3[10(x - vt)2 + 1]-2 20(x - vt)

 
0c
0x

= (-1) 60[10(x - vt)2 + 1]-2(x - vt)

 
02c

0x2 =
-60(-2) 20(x - vt)(x - vt)

[10(x - vt)2 + 1]3

-  
60

[10(x - vt)2 + 1]2

 
02c

0x2 =
2400(x - vt)2

[10(x - vt)2 + 1]3 -
60

[10(x - vt)2 + 1]2

Differentiating with respect to t:

 
0c
0t

=
0
0t
c 3

10(x - vt)2 + 1
d

 
0c
0t

= (-1) 3[10(x - vt)2 + 1]-2 20(-v)(x - vt)

 
0c
0t

= 60v(x - vt) [10(x - vt)2 + 1]-2

 
02c

0t2 =
60v(x - vt)(-2) 20(x - vt)(-v)

[10(x - vt)2 + 1]3

+
-60v2

[10(x - vt)2 + 1]2

 
02c

0t2 =
2400v2(x - vt)2

[10(x - vt)2 + 1]3 -
60v2

[10(x - vt)2 + 1]2

Hence  
02c

0x2 =
1

v2 
02c

0t2  

Note that Eq. (2.11) is a so-called homogeneous differential 
equation; it doesn’t contain a term (such as a “force” or a 
“source”) involving only independent variables. In other 
words, c is in each term of the equation, and that means that if 
c is a solution any multiple of c will also be a solution. Equa-
tion 2.11 is the wave equation for undamped systems that do 
not contain sources in the region under consideration. The ef-
fects of damping can be described by adding in a 0c>0t term to 
form a more general wave equation, but we’ll come back to 
that later (p. 81).

As a rule, partial differential equations arise when the sys-
tem being described is continuous. The fact that time is one of 
the independent variables reflects the continuity of temporal 
change in the process under analysis. Field theories, in general, 
treat continuous distributions of quantities in space and time 

and so take the form of partial differential equations. Max-
well’s formulation of electromagnetism, which is a field theory, 
yields a variation of Eq. (2.11), and from that the concept of 
the electromagnetic wave arises in a completely natural way 
(p. 54).

We began this discussion with the special case of waves that 
have a constant shape as they propagate, even though, as a rule, 
waves don’t maintain a fixed profile. Still, that simple assump-
tion has led us to the general formulation, the differential wave 
equation. If a function that represents a wave is a solution of that 
equation, it will at the same time be a function of (x ∓ vt) —
specifically, one that is twice differentiable (in a nontrivial way) 
with respect to both x and t. 

EXAMPLE 2.2

Does the function

c(x, t) =  exp [(-4ax2 - bt2 + 41ab xt)]

where in a and b are constants, describe a wave? If so, what is 
its speed and direction of propagation?

SOLUTION
Factor the bracketed term:

c(x, t) = exp [-a(4x2 + bt2>a - 41b>a xt)]

c(x, t) = exp [-4a(x - 1b>4a t)2]

That’s a twice differentiable function of (x - vt), so it is a solu-
tion of Eq. (2.11) and therefore describes a wave. Here 
v = 1

21b>a and it travels in the positive x-direction.

2.2 Harmonic Waves

Let’s now examine the simplest waveform, one for which the 
profile is a sine or cosine curve. These are variously known as 
sinusoidal waves, simple harmonic waves, or more succinctly 
as harmonic waves. We shall see in Chapter 7 that any wave 
shape can be synthesized by a superposition of harmonic waves, 
and they therefore take on a special significance.

Choose as the profile the simple function

 c(x, t) 0 t = 0 = c(x) = A sin kx = ƒ(x) (2.12)

where k is a positive constant known as the propagation 
number. It’s necessary to introduce the constant k simply  
because we cannot take the sine of a quantity that has physical 
units. The sine is the ratio of two lengths and is therefore  
unitless. Accordingly, kx is properly in radians, which is not a 
real physical unit. The sine varies from +1 to -1 so that the 
maximum value of c(x) is A. This maximum disturbance is 
known as the amplitude of the wave (Fig. 2.6). To transform 
Eq. (2.12) into a progressive wave traveling at speed v in the 
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positive x-direction, we need merely replace x by (x - vt), in 
which case

 c(x, t) = A sin k(x - vt) = ƒ(x - vt) (2.13)

This is clearly a solution of the differential wave equation (see 
Problem 2.24). Holding either x or t fixed results in a sinusoidal 
disturbance; the wave is periodic in both space and time. The 
spatial period is known as the wavelength and is denoted by l. 
Wavelength is the number of units of length per wave. The cus-
tomary measure of l is the nanometer, where 1 nm = 10-9 m, 
although the micron (1 mm = 10-6 m) is often used and the 
older angstrom (1 A° = 10-10 m) can still be found in the litera-
ture. An increase or decrease in x by the amount l should leave 
c unaltered, that is,

 c(x, t) = c(x ± l, t) (2.14)

In the case of a harmonic wave, this is equivalent to altering the 
argument of the sine function by ±2p. Therefore,

sin k(x - vt) = sin k[(x ± l) - vt] = sin [k(x - vt) ± 2p]

and so 0 kl 0 = 2p 

or, since both k and l are positive numbers,

 k = 2p>l (2.15)

Figure 2.6 shows how to plot the profile given by Eq. (2.12) 
in terms of l. Here w is the argument of the sine function, also 
called the phase. In other words, c(x) = A sin w. Notice that 
c(x) = 0 whenever sin w = 0, which happens when 
w = 0, p, 2p, 3p, and so on. That occurs at x = 0, l>2, l, and 
3l>2, respectively.

In an analogous fashion to the above discussion of l, we 
now examine the temporal period, t. This is the amount of 
time it takes for one complete wave to pass a stationary ob-
server. In this case, it is the repetitive behavior of the wave in 
time that is of interest, so that

 c(x, t) = c(x, t ± t) (2.16)

and sin k(x - vt) = sin k[x - v(t ± t)] 

 sin k(x - vt) = sin [k(x - vt) ± 2p] 

Therefore,

0 kvt 0 = 2p

But these are all positive quantities; hence

 kvt = 2p (2.17)

or 
2p
l

 vt = 2p 

from which it follows that

 t = l>v (2.18)

The period is the number of units of time per wave (Fig. 2.7), 
the inverse of which is the temporal frequency n, or the num-
ber of waves per unit of time (i.e., per second). Thus,

n K 1>t

in units of cycles per second or Hertz. Equation (2.18) then  
becomes

 v = nl (2.19)

Imagine that you are at rest and a harmonic wave on a string is 
progressing past you. The number of waves that sweep by per 
second is n, and the length of each is l. In 1.0 s, the overall 
length of the disturbance that passes you is the product nl. If, 
for example, each wave is 2.0 m long and they come at a rate 
of 5.0 per second, then in 1.0 s, 10 m of wave fly by. This is 
just what we mean by the speed of the wave (v)—the rate, in 
m>s, at which it advances. Said slightly differently, because a 
length of wave l passes by in a time t, its speed must equal 
l>t = nl. Incidentally, Newton derived this relationship in 
the Principia (1687) in a section called “To find the velocity 
of waves.”

Two other quantities are often used in the literature of wave 
motion. One is the angular temporal frequency

 v K 2p>t = 2pn (2.20)

Figure 2.6  A harmonic function, which serves as the profile of a harmonic wave. 
One wavelength corresponds to a change in phase w of 2p rad.

c(x) = Asinkx = Asin2px�l = Asinw 

0 x

c
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24 Chapter 2 Wave Motion

apply equally well to waves that are not harmonic, as long as 
each such wave is made up of a single regularly repeated 
profile-element (Fig. 2.8).

EXAMPLE 2.3

A Nd:YAG laser puts out a beam of 1.06 mm electromagnetic 
radiation in vacuum. Determine (a) the beam’s temporal fre-
quency; (b) its temporal period; and (c) its spatial frequency.

SOLUTION
(a) Since v = nl

n =
v
l

=
2.99 * 108 m>s
1.06 * 10-6 m

= 2.82 * 1014 Hz

or n = 282 TH. (b) The temporal period is t = 1>n =
1>2.82 * 1014 Hz = 3.55 * 10-15s, or 3.55 fs. (c) The spatial 
frequency is k = 1>l = 1>1.06 * 10-6 m = 943 * 103m-1, 
that is, 943 thousand waves per meter.

Using the above definitions we can write a number of equiv-
alent expressions for the traveling harmonic wave:

 c = A sin k(x ∓ vt) [2.13]

 c = A sin 2p ax
l

∓
t
t
b (2.22)

 c = A sin 2p (kx ∓ nt) (2.23)

 c = A sin (kx ∓ vt) (2.24)

 c = A sin 2pn ax
v

∓ tb (2.25)

Of these, Eqs. (2.13) and (2.24) will be encountered most  
frequently. Note that all these idealized waves are of infinite 
extent. That is, for any fixed value of t, there is no mathematical 
limitation on x, which varies from - ∞  to + ∞. Each such wave 
has a single constant frequency and is therefore monochromatic 
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(h)

(i)

t = t�8

t = t�4

t = 3t�8

t = t

t = t�2

t = 5t�8
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c

c

c
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c

Figure 2.7  A harmonic wave moving along the x-axis during a time of 
one period. Note that if this is a picture of a rope any one point on it only 
moves vertically. We’ll discuss the significance of the rotating arrow in 
Section 2.6. For the moment observe that the projection of that arrow  
on the vertical axis equals the value of c at x = 0.

given in units of radians per second. The other, which is impor-
tant in spectroscopy, is the wave number or spatial frequency

 k K 1>l (2.21)

measured in inverse meters. In other words, k is the number of 
waves per unit of length (i.e., per meter). All of these quantities 

l

l

(a)

(b) (c)

l

Figure 2.8  (a) The waveform produced by a saxophone. Imagine any num-
ber of profile-elements (b) that, when repeated, create the waveform (c). The 
distance over which the wave repeats itself is called the wavelength, l.
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SOLUTION
(a) Factor 1>6.0 * 10-7 from the term in parentheses and it be-
comes clear that c(y, t) is a twice differentiable function of 
(  y ± vt), so it does represent a harmonic wave. (b) We could 
also simply use Eq. (2.22) 

c = A sin 2p ax
l

+
t
t
b

whereupon it follows that the period t = 2.0 * 10-15 s.  
Hence n = 1>t = 5.0 * 1014 Hz. (c) The wavelength is l =
6.0 * 10-7m. (d) The amplitude is A = 0.040. (e) The wave 
travels in the negative y direction. (f ) The speed v = nl =
(5.0 * 1014 Hz)(6.0 * 10-7m) = 3.0 * 108 m>s. Alternatively 
if we factor 1>6.0 * 10-7 from the parentheses the speed be-
comes 6.0 * 10-7>2.0 * 10-15 = 3.0 * 108 m>s.

Spatial Frequency

Periodic waves are structures that move through space and 
time displaying wavelengths, temporal periods, and temporal 
frequencies; they undulate in time. In modern Optics we are 
also interested in stationary periodic distributions of informa-
tion that conceptually resemble snapshots of waves. Indeed, 
later on in Chapters 7 and 11 we’ll see that ordinary images of 
buildings and people and picket fences can all be synthesized 
using periodic functions in space, utilizing a process called 
Fourier analysis.

What we need to keep in mind here is that optical informa-
tion can be spread out in space in a periodic way much like a 
wave profile. To make the point we convert the sinusoid of  
Fig. 2.6 into a diagram of smoothly varying brightness, namely, 
Fig. 2.10. This sinusoidal brightness variation has a spatial  
period of several millimeters (measured, e.g., from bright peak 
to bright peak). Here a pair of black and white bands corresponds 
to one “wavelength,” that is, so many millimeters (or centimeters) 
per black and white pair. The inverse of that—one over the 

or, even better, monoenergetic. Real waves are never mono-
chromatic. Even a perfect sinusoidal generator cannot have 
been operating forever. Its output will unavoidably contain a 
range of frequencies, albeit a small one, just because the wave 
does not extend back to t = - ∞ . Thus all waves comprise a 
band of frequencies, and when that band is narrow the wave is 
said to be quasimonochromatic.

Before we move on, let’s put some numbers into Eq. (2.13) 
and see how to deal with each term. To that end, arbitrarily let 
v = 1.0 m>s and l = 2.0 m. Then the wavefunction

c = A sin 
2p
l

 (x - vt)

in SI units becomes

c = A sin p(x - t)

Figure 2.9 shows how the wave progresses to the right at 1.0 m>s as 
the time goes from t = 0 [whereupon c = A sin px] to t = 1.0 s  
[whereupon c = A sin p(x - 1.0)] to t = 2.0 s [whereupon 
c = A sin p(x - 2.0)].

EXAMPLE 2.4

Consider the function

c (y, t) = (0.040) sin 2p a y

6.0 * 10-7 +
t

2.0 * 10-15b

where everything is in appropriate SI units. (a) Does this ex-
pression have the form of a wave? Explain. If so, determine its 
(b) frequency, (c) wavelength, (d) amplitude, (e) direction of 
propagation, and (f ) speed.

t = 0

t = 2.0 s

c = A sinpx
x  c

1

0 0
1/2

3/2

+A
1 0

–A
2 0

2 3 x  (m)
0

+A

– A

c = A sinp(x – 2)
x  c

1

0 0
1/2

3/2

+A
1 0

–A
2 0

2 3 x  (m)
0

+A

– A

t = 1.0 s
c = A sinp(x – 1)

x  c

1

0 0
1/2

3/2

–A
1 0

+A
2 0

2 3 x  (m)
0

+A

– A

Figure 2.9  A progressive wave of the form c(x, t) = A sin k(x - vt), 
moving to the right at a speed of 1.0 m>s.

Figure 2.10  A sinusoidal brightness distribution of relatively low spatial 
frequency.
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26 Chapter 2 Wave Motion

which is equivalent to

 c(x, t) = A sin (vt - kx) (2.29)

or c(x, t) = A cos avt - kx -
p

2
b 

The initial phase angle is just the constant contribution to the 
phase arising at the generator and is independent of how far in 
space, or how long in time, the wave has traveled. 

The phase in Eq. (2.26) is (kx - vt), whereas in Eq. (2.29) 
it’s (vt - kx). Nonetheless, both of these equations describe 
waves moving in the positive x-direction that are otherwise 
identical except for a relative phase difference of p. As is often 
the case, when the initial phase is of no particular significance 
in a given situation, either Eq. (2.26) or (2.29) or, if you like, a 
cosine function can be used to represent the wave. Even so, in 
some situations one expression for the phase may be mathemat-
ically more appealing than another; the literature abounds with 
both, and so we will use both.

The phase of a disturbance such as c(x, t) given by  
Eq. (2.28) is

w (x, t) = (kx - vt + e)

spatial period—is the spatial frequency, the number of black 
and white pairs per millimeter (or per centimeter). Figure 2.11 
depicts a similar pattern with a shorter spatial period and a high-
er spatial frequency.  These are single spatial frequency distri-
butions akin to monochromatic profiles in the time domain.  As 
we go on we’ll see how images can be built up out of the super-
position of individual spatial frequency contributions just like 
those of Figs. 2.10 and 2.11.

2.3 Phase and Phase Velocity

Examine any one of the harmonic wavefunctions, such as

 c(x, t) = A sin (kx - vt) (2.26)

The entire argument of the sine is the phase w of the wave, 
where

 w = (kx - vt) (2.27)

At t = x = 0,

c(x, t) 0 x =  0 = c(0, 0) = 0
                                      t =  0 

which is certainly a special case. More generally, we can write

 c(x, t) = A sin (kx - vt + e) (2.28)

where e is the initial phase. To get a sense of the physical 
meaning of e, imagine that we wish to produce a progressive 
harmonic wave on a stretched string, as in Fig. 2.12. In order to 
generate harmonic waves, the hand holding the string would 
have to move such that its vertical displacement y was propor-
tional to the negative of its acceleration, that is, in simple har-
monic motion (see Problem 2.27). But at t = 0 and x = 0, the 
hand certainly need not be on the x-axis about to move down-
ward, as in Fig. 2.12. It could, of course, begin its motion on an 
upward swing, in which case e = p, as in Fig. 2.13. In this lat-
ter case,

c(x, t) = y(x, t) = A sin (kx - vt + p)

v

v

v

v

t = 0

t = t�4

t = t�2

t = t

t = 3t�4

e = 0

Figure 2.12  With e = 0 note that at x = 0 and t = t>4 = p>2v,  
y = A sin (-p>2) = -A.

Figure 2.11  A sinusoidal brightness distribution of relatively high spatial 
frequency.
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 2.3 Phase and Phase Velocity 27

The term on the left represents the speed of propagation of the 
condition of constant phase. Imagine a harmonic wave and 
choose any point on the profile, for example, a crest of the 
wave. As the wave moves through space, the displacement y of 
the crest remains fixed. Since the only variable in the harmonic 
wavefunction is the phase, it too must be constant for that mov-
ing point. That is, the phase is fixed at such a value as to yield 
the constant y corresponding to the chosen point. The point 
moves along with the profile at the speed v, and so too does the 
condition of constant phase.

Taking the appropriate partial derivatives of w as given, for ex-
ample, by Eq. (2.29) and substituting them into Eq. (2.32), we get

 a0x
0t
b
w

= ±
v

k
= ±v (2.33)

The units of v are rad>s and the units of k are rad>m. The units 
of v>k are appropriately m>s. This is the speed at which the 
profile moves and is known commonly as the phase velocity of 
the wave. The phase velocity is accompanied by a positive sign 
when the wave moves in the direction of increasing x and a neg-
ative one in the direction of decreasing x. This is consistent with 
our development of v as the magnitude of the wave velocity: 
v 7 0.

Consider the idea of the propagation of constant phase 
and how it relates to any one of the harmonic wave equa-
tions, say,

c = A sin k(x ∓ vt)

with w = k(x - vt) = constant 

As t increases, x must increase. Even if x 6 0 so that w 6 0, x 
must increase (i.e., become less negative). Here, then, the condi-
tion of constant phase moves in the direction of increasing x. As 
long as the two terms in the phase subtract from each other, the 
wave travels in the positive x-direction. On the other hand, for

w = k(x + vt) = constant

as t increases x can be positive and decreasing or negative and 
becoming more negative. In either case, the constant-phase 
condition moves in the decreasing x-direction.

EXAMPLE 2.5

A propagating wave at time t = 0 can be expressed in SI units 
as c(y, 0) = (0.030 m) cos (py>2.0). The disturbance moves in 
the negative y-direction with a phase velocity of 2.0 m>s. Write 
an expression for the wave at a time of 6.0 s.

SOLUTION
Write the wave in the form

c(y, t) = A cos 2p ay

l
±

t
t
b

and is obviously a function of x and t. In fact, the partial deriva-
tive of w with respect to t, holding x constant, is the rate-of-
change of phase with time, or

 ` a0w
0t
b

x
` = v (2.30)

The rate-of-change of phase at any fixed location is the angular 
frequency of the wave, the rate at which a point on the rope in 
Fig. 2.12 oscillates up and down. That point must go through 
the same number of cycles per second as the wave. For each 
cycle, w changes by 2p. The quantity v is the number of radians 
the phase sweeps through per second. The quantity k is the 
number of radians the phase sweeps through per meter.

Similarly, the rate-of-change of phase with distance, holding 
t constant, is

 ` a0w
0x
b

t
` = k (2.31)

These two expressions should bring to mind an equation 
from the theory of partial derivatives, one used frequently in 
Thermodynamics, namely,

 a0x
0t
b
w

=
-(0w>0t)x

(0w>0x)t
 (2.32)

v

v

v

v

t = 0

t = t�4

t = t�2

t = t

t = 3t�4

e = p

Figure 2.13  With e = p note that at x = 0 and t = t>4, y =  
A sin (p>2) = A.

Continued
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28 Chapter 2 Wave Motion

2.4 The Superposition Principle

The form of the differential wave equation [Eq. (2.11)] reveals 
an intriguing property of waves, one that is quite unlike the be-
havior of a stream of classical particles. Suppose that the wave-
functions c1 and c2 are each separate solutions of the wave 
equation; it follows that (c1 + c2) is also a solution. This is 
known as the Superposition Principle, and it can easily be 
proven, since it must be true that

02c1

0x2 =
1

v2 
02c1

0t2  and 
02c2

0x2 =
1

v2 
02c2

0t2

Adding these yields

02c1

0x2 +
02c2

0x2 =
1

v2 
02c1

0t2 +
1

v2 
02c2

0t2

Here A = 0.030 m and

c(y, 0) = (0.030 m) cos 2p a y

4.0
b

We need the period and since l = 4.0 m, v = nl = l>t;
t = l>v = (4.0 m)>(2.0 m>s) = 2.0 s. Hence

c(y, t) = (0.030 m) cos 2p a y

4.0
+

t
2.0

b

The positive sign in the phase indicates motion in the negative 
y-direction. At t = 6.0 s

c(y, 6.0) = (0.030 m) cos 2p a y

4.0
+ 3.0b

Any point on a harmonic wave having a fixed magnitude 
moves such that w(x, t) is constant in time, in other words, 
dw(x, t)>dt = 0 or, alternatively, dc(x, t)>dt = 0. This is true for 
all waves, periodic or not, and it leads (Problem 2.34) to the 
expression

 ±v =
-(0c>0t)x

(0c>0x)t
 (2.34)

which can be used to conveniently provide v when we have 
c(x, t). Note that because v is always a positive number, when 
the ratio on the right turns out negative the motion is in the 
negative x-direction.

Figure 2.14 depicts a source producing hypothetical two- 
dimensional waves on the surface of a liquid. The essentially 
sinusoidal nature of the disturbance, as the medium rises and 
falls, is evident in the diagram. But there is another useful way 
to envision what’s happening. The curves connecting all the 
points with a given phase form a set of concentric circles. Fur-
thermore, given that A is everywhere constant at any one dis-
tance from the source, if w is constant over a circle, c too must 
be constant over that circle. In other words, all the correspond-
ing peaks and troughs fall on circles, and we speak of these as 
circular waves, each of which expands outward at the speed v.

Figure 2.14  Circular waves. (E.H.)

A solar flare on the Sun caused circular seismic ripples to flow across the surface. (NASA)
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 2.4 The Superposition Principle 29

the two coexisting waves in Fig. 2.15. At every point (i.e., every 
value of kx) we simply add  c1 and c2, either of which could be 
positive or negative. As a quick check, keep in mind that wher-
ever either constituent wave is zero (e.g., c1 = 0), the resultant 
disturbance equals the value of the other nonzero constituent 
wave (c = c2), and those two curves cross at that location (e.g., 
at kx = 0 and +3.14 rad). On the other hand, c = 0 wherever 
the two constituent waves have equal magnitudes and opposite 
signs (e.g., at kx = +2.67 rad). Incidentally, notice how a rela-
tive positive phase difference of 1.0 rad between the two curves 
shifts c2 to the left with respect to c1 by 1.0 rad.

Developing the illustration a bit further, Fig. 2.16 shows how 
the resultant arising from the superposition of two nearly equal-
amplitude waves depends on the phase-angle difference between 
them. In Fig. 2.16a the two constituent waves have the same 
phase; that is, their phase-angle difference is zero, and they are 
said to be in-phase; they rise and fall in-step, reinforcing each 
other. The composite wave, which then has a substantial ampli-
tude, is sinusoidal with the same frequency and wavelength as the 
component waves (p. 293). Following the sequence of the draw-
ings, we see that the resultant amplitude diminishes as the phase-
angle difference increases until, in Fig. 2.16d, it almost vanishes 
when that difference equals p. The waves are then said to be 180° 
out-of-phase. The fact that waves which are out-of-phase tend to 
diminish each other has given the name interference to the 
whole phenomenon.

and so 
02

0x2 (c1 + c2) =
1

v2 
02

0t2 (c1 + c2) 

which establishes that (c1 + c2) is indeed a solution. What 
this means is that when two separate waves arrive at the same 
place in space wherein they overlap, they will simply add to (or 
subtract from) one another without permanently destroying or 
disrupting either wave. The resulting disturbance at each point 
in the region of overlap is the algebraic sum of the individual 
constituent waves at that location (Fig. 2.15). Once having 
passed through the region where the two waves coexist, each 
will move out and away unaffected by the encounter.

Keep in mind that we are talking about a linear superposi-
tion of waves, a process that’s widely valid and the most com-
monly encountered. Nonetheless, it is also possible for the wave 
amplitudes to be large enough to drive the medium in a nonlin-
ear fashion (p. 667). For the time being we’ll concentrate on the 
linear differential wave equation, which results in a linear Su-
perposition Principle.

Much of Optics involves the superposition of waves in one 
way or another. Even the basic processes of reflection and re-
fraction are manifestations of the scattering of light from count-
less atoms (p. 96), a phenomenon that can only be treated satis-
factorily in terms of the overlapping of waves. It therefore 
becomes crucial that we understand the process, at least quali-
tatively, as soon as possible. Consequently, carefully examine 

c1(x0)

c1

c1(x0)

c1 = 1.0 sin kx
c2 = 0.9 sin (kx + 1.0 rad)
c = c1 + c2

–1 10 2 3

–2

–1

1

2

kx  (rad)
kx0

c(x, 0)

c(x0)

c

c2(x0)

c2

t = 0

Figure 2.15  The superposition of two equal-wavelength sinusoids c1 and 
c2, having amplitudes A1 and A2, respectively. The resultant, c, is a sinu-
soid with the same wavelength, which at every point equals the algebraic 
sum of the constituent sinusoids. Thus at x = x0, c(x0) = c1(x0) +  c2(x0); 
the magnitudes add. The amplitude of c is A and it can be determined in 
several ways; see Fig. 2.19.

Figure 2.16  The superposition of two sinusoids with amplitudes of 
A1 = 1.0 and A2 = 0.9. In (a) they are in-phase. In (b) c1 leads c2 by 
p>3. In (c) c1 leads c2 by 2p>3. And (d) c1 and c2 are out-of-phase by 
p and almost cancel each other. To see how the amplitudes can be deter-
mined, go to Fig. 2.20.
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30 Chapter 2 Wave Motion

and z̃ = x + iy = r (cos u + i sin u) 

The Euler formula*

eiu = cos u + i sin u

leads to the expression e-iu = cos u - i sin u, and adding and 
subtracting these two equations yields

cos u =
eiu + e-iu

2

and sin u =
eiu - e-iu

2i  

Moreover, the Euler formula allows us (Fig. 2.17b) to write

z̃ = reiu = r cos u + ir sin u

where r is the magnitude of z̃ and u is the phase angle of z̃, in 
radians. The magnitude is often denoted by 0 z̃ 0  and referred to 
as the modulus or absolute value of the complex number. The 
complex conjugate, indicated by an asterisk (Fig. 2.17c), is 
found by replacing i wherever it appears, with - i, so that

z̃* = (x + iy)* = (x - iy)

z̃* = r (cos u - i sin u)

and z̃* = re-iu 

The operations of addition and subtraction are quite straight-
forward:

z̃1 ± z̃2 = (x1 + iy1) ± (x2 + iy2)

and therefore

z̃1 ± z̃2 = (x1 ± x2) + i(y1 ± y2)

Notice that this process is very much like the component addi-
tion of vectors.

Multiplication and division are most simply expressed in 
polar form

z̃1z̃2 = r1r2ei(u1 +u2)

and 
z̃1

z̃2
=

r1

r2
 ei(u1 +u2) 

A number of facts that will be useful in future calculations 
are well worth mentioning at this point. It follows from the 
ordinary trigonometric addition formulas (Problem 2.44) that

ez̃1 + z̃2 = ez̃1ez̃2

2.5 The Complex Representation

As we develop the analysis of wave phenomena, it will become 
evident that the sine and cosine functions that describe harmon-
ic waves can be somewhat awkward for our purposes. The ex-
pressions formulated will sometimes be rather involved and the 
trigonometric manipulations required to cope with them will be 
even more unattractive. The complex-number representation of-
fers an alternative description that is mathematically simpler to 
process. In fact, complex exponentials are used extensively in 
both Classical and Quantum Mechanics, as well as in Optics.

The complex number z̃ has the form

 z̃ = x + iy (2.35)

where i = 1-1. The real and imaginary parts of z̃ are, respec-
tively, x and y, where both x and y are themselves real numbers. 
This is illustrated graphically in the Argand diagram in Fig. 2.17a. 
In terms of polar coordinates (r, u),

x = r cos u    y = r sin u

*If you have any doubts about this identity, take the differential of 
z̃ = cos u + i sin u, where r = 1. This yields dz ˜ = i  z̃ du, and integration  
gives z̃ = exp (i  u).

Imaginary

x r cos u

y

Real

(a)
(x + iy)

u

Im
x

– y

Re

(c)

(x – iy)

~z*

~z

u

Im

Re

(b)

u

r r sin u    

Im

Re

(d)

A
A sin vt 

A cos vt 

vt 

Figure 2.17  An Argand diagram is a representation of a complex num-
ber in terms of its real and imaginary components. This can be done 
using either (a) x and y or (b) r and u. Moreover, when u is a constantly 
changing function of time (d), the arrow rotates at a rate v.

Water waves overlapping and interfering. (E.H.)
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